Impacts of improved horizontal resolutions in the simulations of mean and extreme precipitation using CMIP6 HighResMIP models over West Africa
Environmental Monitoring and Assessment, ISSN: 1573-2959, Vol: 196, Issue: 3, Page: 328
2024
- 1Citations
- 12Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We conducted an analysis of 16 historical simulations from the High-Resolution Model Intercomparison Project (HighResMIP) as part of the Coupled Model Intercomparison Project (CMIP) phase 6 (CMIP6). These simulations encompass both high- and low-resolution models and aim to investigate the impact of improved horizontal resolution on mean and extreme precipitation in West Africa between 1985 and 2014. Six Expert Team on Climate Change Detection and Indices (ETCCDI) were used to charactererize extreme indices. Bias adjustment was used to detect and adjust the biases in the models. Our observations indicate that the southeastern and southwestern regions of West Africa experience the most significant precipitation, which aligns with the simulations from HighResMIP. The enhanced horizontal resolution notably influences the simulation of orographically induced rainfall in elevated areas and intensifies precipitation in various aspects. When examining the highest 1-day precipitation, our observations reveal that most of the Guinea Coast region had 1-day rainfall exceeding 100 mm. However, this was overestimated and in some simulations underestimated by HighResMIP simulations. Furthermore, an increase in horizontal resolution appears to enhance the ability of high-resolution models to replicate the observed patterns of heavy precipitation (R10mm) and very heavy rainfall (R20mm) days. Spatial and temporal analysis suggests that uncertainty exists in the simulation of extreme precipitation in both high- and low-resolution simulations over West Africa. Also, bias adjustment shows a significant bias in the simulations. To address this issue, we employed a bias adjustment approach.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85186362449&origin=inward; http://dx.doi.org/10.1007/s10661-024-12492-7; http://www.ncbi.nlm.nih.gov/pubmed/38424296; https://link.springer.com/10.1007/s10661-024-12492-7; https://dx.doi.org/10.1007/s10661-024-12492-7; https://link.springer.com/article/10.1007/s10661-024-12492-7
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know