Study on the applicability of FAI linear fitting model in the extraction of cyanobacterial blooms
Environmental Monitoring and Assessment, ISSN: 1573-2959, Vol: 196, Issue: 10, Page: 909
2024
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures2
- Readers2
Article Description
Currently, more and more lakes around the world are experiencing outbreaks of cyanobacterial blooms, and high-precision and rapid monitoring of the spatial distribution of algae in water bodies is an important task. Remote sensing technology is one of the effective means for monitoring algae in water bodies. Studies have shown that the Floating Algae Index (FAI) is superior to methods such as the Standardized Differential Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) in monitoring cyanobacterial blooms. However, compared to the NDVI method, the FAI method has difficulty in determining the threshold, and how to choose the threshold with the highest classification accuracy is challenging. In this study, FAI linear fitting model (FAI-L) is selected to solve the problem that FAI threshold is difficult to determine. Innovatively combine FAI index and NDVI index, and use NDVI index to find the threshold of FAI index. In order to analyze the applicability of FAI-L to extract cyanobacterial blooms, this paper selected multi-temporal Landsat8, HJ-1B, and Sentinel-2 remote sensing images as data sources, and took Chaohu Lake and Taihu Lake in China as research areas to extract cyanobacterial blooms. The results show that (1) the accuracy of extracting cyanobacterial bloom by FAI-L method is generally higher than that by NDVI and FAI. Under different data sources and different research areas, the average accuracy of extracting cyanobacterial blooms by FAI-L method is 95.13%, which is 6.98% and 18.43% higher than that by NDVI and FAI respectively. (2) The average accuracy of FAI-L method for extracting cyanobacterial blooms varies from 84.09 to 99.03%, with a standard deviation of 4.04, which is highly stable and applicable. (3) For simultaneous multi-source image data, the FAI-L method has the highest average accuracy in extracting cyanobacterial blooms, at 95.93%, which is 6.77% and 13.26% higher than NDVI and FAI methods, respectively. In this paper, it is found that FAI-L method shows high accuracy and stability in extracting cyanobacterial blooms, and it can extract the spatial distribution of cyanobacterial blooms well, which can provide a new method for monitoring cyanobacterial blooms.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85203307607&origin=inward; http://dx.doi.org/10.1007/s10661-024-13082-3; http://www.ncbi.nlm.nih.gov/pubmed/39249606; https://link.springer.com/10.1007/s10661-024-13082-3; https://dx.doi.org/10.1007/s10661-024-13082-3; https://link.springer.com/article/10.1007/s10661-024-13082-3
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know