Environmental impact assessment of red mud utilization in concrete production: a life cycle assessment study
Environment, Development and Sustainability, ISSN: 1573-2975, Vol: 26, Issue: 5, Page: 12219-12238
2024
- 6Citations
- 50Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This study aims to evaluate the environmental impact of using red mud (RM) as a partial replacement for cement in concrete production. Using industrial byproducts such as red mud as a raw material in concrete can reduce the environmental impacts of concrete and alumina industries. Red mud can also provide a sustainable solution for its disposal problem, while also improving the durability and strength of concrete. Life cycle assessment methodology was applied using Simapro© software. A cradle-to-gate analysis was carried out. The results were analyzed based on the Ecoinvent 3.8 database and ReCiPe method for 18 impact categories. The results show that the use of RM in concrete production also had a significant positive impact on all environmental impact categories, including freshwater ecotoxicity and human carcinogenic toxicity, compared to traditional concrete production. On the other hand, disposing of RM in landfills had been analyzed and from the results RM disposal showed significant negative impacts on the environment, including human carcinogenic toxicity, freshwater eutrophication, and marine ecotoxicity. These reductions vary between 0.2% (water consumption category) and 939.7% (Human carcinogenic toxicity). This study presents a significant contribution to the aluminum and construction industries by shedding light on the possibility of utilizing RM as a sustainable raw material in concrete production, leading to a reduction in environmental impact. By analyzing the properties of various concrete samples containing different percentages of RM, this study also highlights the potential for enhancing the mechanical properties of concrete through the incorporation of RM in certain amounts.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know