Effects of Fire Parameters on Critical Velocity in Curved Tunnels: A Numerical Study and Response Surface Analysis
Fire Technology, ISSN: 1572-8099, Vol: 60, Issue: 3, Page: 1769-1802
2024
- 2Citations
- 3Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Fire accidents are more likely to occur in tunnels with different curves, aspect ratios, and slopes due to the land’s geographical characteristics. A three-dimensional computational fluid dynamics code with curvilinear grids fitted to the body was used to simulate a variety of fire locations releasing heat at a rate of 5 MW–60 MW in a tunnel with a turning radius of 100 m–1500 m, an aspect ratio of 0.5–2, and a slope between – 10% and 10%. Using the Design of Experiments (DOE) method coupled with numerical simulations, 32 3D numerical models were constructed and a second-order critical velocity model was generated. Analysis of critical velocity was performed based on Response Surface Methodology (RSM) and multifactor curve plots were drawn for effective parameters. The results showed that the critical velocity was proportional to one-third power of the heat release rate. It was also observed that the critical velocity increased gradually as the fire source moved from the tunnel’s center to its walls. Furthermore, the critical velocity decreased with increasing the aspect ratio. Results showed that the critical velocity increased with increasing the tunnel turning radius. Moreover, tunnels with negative slopes have a higher critical velocity than horizontal tunnels without slopes. Finally, by defining the parameters in non-dimensional form, a new modified form was derived for critical velocity calculation (R = 0.98). A critical velocity of 1.24 m/s–5.21 m/s was calculated based on five parameter values in this study. Furthermore, other straight and curved tunnel models confirmed the formula’s predictions.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know