Temperature, moisture and mode-mixity effects on copper leadframe/EMC interfacial fracture toughness
International Journal of Fracture, ISSN: 0376-9429, Vol: 185, Issue: 1-2, Page: 115-127
2014
- 44Citations
- 15Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A systematic investigation and characterization of the interfacial fracture toughness of the bi-material copper leadframe/epoxy molding compound is presented. Experiments and finite element simulations were used to investigate delamination and interfacial fracture toughness of the bi-material. Two dimensional simulations using virtual crack closure technique, virtual crack extension and J-integral proved to be computationally cheap and accurate to investigate and characterize the interfacial fracture toughness of bi-material structures. The effects of temperature, moisture diffusion and mode-mixity on the interfacial fracture toughness of the bi-material were considered. Testing temperature and moisture exposure significantly reduce the interfacial fracture toughness, and should be avoided if possible. © 2013 Springer Science+Business Media Dordrecht.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know