An experimentally-calibrated damage mechanics model for stone fracture in shock wave lithotripsy
International Journal of Fracture, ISSN: 1573-2673, Vol: 211, Issue: 1-2, Page: 203-216
2018
- 6Citations
- 5Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations6
- Citation Indexes6
- CrossRef1
- Captures5
- Readers5
Article Description
A damage model suggested by the Tuler–Butcher concept of dynamic accumulation of microscopic defects is obtained from experimental data on microcrack formation in synthetic kidney stones. Experimental data on appearance of microcracks is extracted from micro-computed tomography images of BegoStone simulants obtained after subjecting the stone to successive pulses produced by an electromagnetic shock-wave lithotripter source. Image processing of the data is used to infer statistical distributions of crack length and width in representative transversal cross-sections of a cylindrical stone. A high-resolution finite volume computational model, capable of accurately modeling internal reflections due to local changes in material properties produced by material damage, is used to simulate the accumulation of damage due to successive shocks. Comparison of statistical distributions of microcrack formation in computation and experiment allows calibration of the damage model. The model is subsequently used to compute fracture of a different aspect-ratio cylindrical stone predicting concurrent formation of two main fracture areas as observed experimentally.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85045747957&origin=inward; http://dx.doi.org/10.1007/s10704-018-0283-x; http://www.ncbi.nlm.nih.gov/pubmed/30349151; http://link.springer.com/10.1007/s10704-018-0283-x; https://dx.doi.org/10.1007/s10704-018-0283-x; https://link.springer.com/article/10.1007/s10704-018-0283-x
Springer Nature
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know