Thermal stability, P- V criticality and heat engine of charged rotating accelerating black holes
General Relativity and Gravitation, ISSN: 1572-9532, Vol: 54, Issue: 2
2022
- 19Citations
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this paper, we study thermodynamic features of the charged rotating accelerating black holes in anti-de Sitter spacetime. First, we consider these black holes as the thermodynamic systems and analyze thermal stability/instability through the use of heat capacity in the canonical ensemble. We also investigate the effects of angular momentum, electric charge and string tension on the thermodynamic quantities and stability of the system. Considering the known relation between pressure and the cosmological constant, we extract the critical quantities and discuss how the mentioned parameters affect them. Then, we construct a heat engine by taking into account this black hole as the working substance, and obtain the heat engine efficiency by considering a rectangle heat cycle in the P- V plane. We examine the effects of black hole parameters on the efficiency and analyze their effective roles. Finally, by comparing the engine efficiency with Carnot efficiency, we investigate conditions in order to have a consistent thermodynamic second law.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know