PlumX Metrics
Embed PlumX Metrics

Automatic Speech Emotion Recognition: a Systematic Literature Review

International Journal of Speech Technology, ISSN: 1572-8110, Vol: 27, Issue: 1, Page: 267-285
2024
  • 2
    Citations
  • 0
    Usage
  • 13
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Automatic Speech Emotion Recognition (ASER) has recently garnered attention across various fields including artificial intelligence, pattern recognition, and human–computer interaction. However, ASER encounters numerous challenges such as a shortage of diverse datasets, appropriate feature selection, and suitable intelligent recognition techniques. To address these challenges, a systematic literature review (SLR) was conducted following established guidelines. A total of 60 primary research papers spanning from 2011 to 2023 were reviewed to investigate, interpret, and analyze the related literature by addressing five key research questions. Despite being an emerging area with applications in real-life scenarios, ASER still grapples with limitations in existing techniques. This SLR provides a comprehensive overview of existing techniques, datasets, and feature extraction tools in the ASER domain, shedding light on the weaknesses of current research studies. Additionally, it outlines a list of limitations for consideration in future work.

Bibliographic Details

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know