Effect of etching parameters on the electrochemical response of silicon nanowires
Journal of Applied Electrochemistry, ISSN: 1572-8838, Vol: 52, Issue: 2, Page: 273-284
2022
- 5Citations
- 9Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Silicon nanowires combine a high electrical conductivity with low thermal conductivity due to the small cross section offering a good template for sensing. Silicon p-type (100) substrate was used in this work to present a comparative study from a morphological point of view as well as for the electrical properties of silicon nanowires (SiNWs) etched by Ag-assisted chemical method in one-step and two-step process. The comparison between both techniques for SiNWs samples’ elaborated with Metal-Assisted Chemical Technique (MACE) was investigated by Scanning Electron Microscopy images that clearly show the presence of nanowires and the existence of porous silicon structure especially by Transmission Electron Microscopy technique. Several particles on the SiNWs surface such as oxygen and hydrogen elements were identified by Fourier-Transformed Infrared Spectroscopy measurements. The results indicate that the MACE’s steps influence the nucleation and motility of Ag particles, which leads to a different length and density structure within the nanowires. These parameters influence the electrochemical properties of the surface that was studied using electrochemical measurements. Impedance analysis revealed that the charge transfer resistance decreases with the length of the SiNWs dissimilar to the capacitance based on the cyclic voltammetry analysis. In this paper, we studied the electrochemical parameters which indicate that two-step MACE procedure presents a resistance nearly the half of the value of SiNWs produced using one-step MACE technique; as for the capacitance, it increases by 28.5%. We can notice that SiNWs produced using two-step MACE show better results for biosensing application. For that reason, we decide to functionalize the two-step MACE SiNWs to prove the ease of the surface modification. Deposition of nickel nanoparticles was analysed manifesting a good amelioration of the resistance with a factor of 2.5. Graphic abstract: [Figure not available: see fulltext.]
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know