A novel hemizygous loss-of-function mutation in ADGRG2 causes male infertility with congenital bilateral absence of the vas deferens
Journal of Assisted Reproduction and Genetics, ISSN: 1573-7330, Vol: 37, Issue: 6, Page: 1421-1429
2020
- 15Citations
- 23Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations15
- Citation Indexes15
- 15
- CrossRef7
- Captures23
- Readers23
- 23
Article Description
Purpose: Cystic fibrosis transmembrane conductance regulator (CFTR) and adhesion G protein-coupled receptor G2 (ADGRG2) have been identified as the main pathogenic genes in congenital bilateral absence of the vas deferens (CBAVD), which is an important cause of obstructive azoospermia. This study aimed to identify the disease-causing gene in two brothers with CBAVD from a Chinese consanguineous family and reveal the intracytoplasmic sperm injection (ICSI) outcomes in these patients. Methods: Whole-exome sequencing and Sanger sequencing were used to identify the candidate pathogenic genes. Real-time polymerase chain reaction, immunohistochemistry, and immunofluorescence were used to assess the expression of the mutant gene. Moreover, the ICSI results from both patients were retrospectively reviewed. Results: A novel hemizygous loss-of-function mutation (c.G118T: p.Glu40*) in ADGRG2 was identified in both patients with CBAVD. This mutation is absent from the human genome databases and causes an early translational termination in the third exon of ADGRG2. Expression analyses showed that both the ADGRG2 mRNA and the corresponding protein were undetectable in the proximal epididymal tissue of ADGRG2-mutated patients. ADGRG2 expression was restricted to the apical membranes of non-ciliated epithelia in human efferent ducts, which was consistent with a previous report in mice. Both ADGRG2-mutated patients had normal spermatogenesis and had successful clinical outcomes following ICSI. Conclusions: Our study verifies the pathogenic role of ADGRG2 in X-linked CBAVD and broadens the spectrum of ADGRG2 mutations. In addition, we found positive ICSI outcomes in the two ADGRG2-mutated CBAVD patients.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85084047915&origin=inward; http://dx.doi.org/10.1007/s10815-020-01779-6; http://www.ncbi.nlm.nih.gov/pubmed/32314195; https://link.springer.com/10.1007/s10815-020-01779-6; https://dx.doi.org/10.1007/s10815-020-01779-6; https://link.springer.com/article/10.1007/s10815-020-01779-6
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know