Structure-activity relationships of thiostrepton derivatives: Implications for rational drug design
Journal of Computer-Aided Molecular Design, ISSN: 1573-4951, Vol: 28, Issue: 12, Page: 1205-1215
2014
- 9Citations
- 28Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations9
- Citation Indexes9
- CrossRef9
- Captures28
- Readers28
- 28
Article Description
The bacterial ribosome is a major target of naturally occurring thiopeptides antibiotics. Studying thiopeptide (e.g. thiostrepton) binding to the GAR's 23S·L11 ribosomal subunit using docking methods is challenging. Regarding the target, the binding site is composed of a flexible protein-RNA nonbonded interface whose available crystal structure is of medium resolution. Regarding the ligands, the thiopeptides are chemically complex, flexible, and contain macrocycles. In this study we developed a combined MD-docking-MD workflow that allows us to study thiopeptide-23S·L11 binding. It is shown that docking thiostrepton-like ligands to an MD-refined receptor structure instead of the medium resolution crystal leads to better convergence to the native-like docking pose and a better reproduction of experimental binding affinities. By applying an energy decomposition analysis, we identify key structural binding elements within GAR's rRNA-protein binding site and within the ligand structures.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84921938659&origin=inward; http://dx.doi.org/10.1007/s10822-014-9797-0; http://www.ncbi.nlm.nih.gov/pubmed/25281020; http://link.springer.com/10.1007/s10822-014-9797-0; https://dx.doi.org/10.1007/s10822-014-9797-0; https://link.springer.com/article/10.1007/s10822-014-9797-0
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know