Fine tuning for success in structure-based virtual screening
Journal of Computer-Aided Molecular Design, ISSN: 1573-4951, Vol: 35, Issue: 12, Page: 1195-1206
2021
- 4Citations
- 26Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations4
- Citation Indexes4
- Captures26
- Readers26
- 26
Article Description
Structure-based virtual screening plays a significant role in drug-discovery. The method virtually docks millions of compounds from corporate or public libraries into a binding site of a disease-related protein structure, allowing for the selection of a small list of potential ligands for experimental testing. Many algorithms are available for docking and assessing the affinity of compounds for a targeted protein site. The performance of affinity estimation calculations is highly dependent on the size and nature of the site, therefore a rationale for selecting the best protocol is required. To address this issue, we have developed an automated calibration process, implemented in a Knime workflow. It consists of four steps: preparation of a protein test set with structures and models of the target, preparation of a compound test set with target-related ligands and decoys, automatic test of 24 scoring/rescoring protocols for each target structure and model, and graphical display of results. The automation of the process combined with execution on high performance computing resources greatly reduces the duration of the calibration phase, and the test of many combinations of algorithms on various target conformations results in a rational and optimal choice of the best protocol. Here, we present this tool and exemplify its application in setting-up an optimal protocol for SBVS against Retinoid X Receptor alpha. Graphical abstract: [Figure not available: see fulltext.]
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85119529993&origin=inward; http://dx.doi.org/10.1007/s10822-021-00431-4; http://www.ncbi.nlm.nih.gov/pubmed/34799816; https://link.springer.com/10.1007/s10822-021-00431-4; https://dx.doi.org/10.1007/s10822-021-00431-4; https://link.springer.com/article/10.1007/s10822-021-00431-4
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know