PlumX Metrics
Embed PlumX Metrics

Recurrent networks with short term synaptic depression

Journal of Computational Neuroscience, ISSN: 0929-5313, Vol: 27, Issue: 3, Page: 607-620
2009
  • 51
    Citations
  • 0
    Usage
  • 79
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Cortical circuitry shows an abundance of recurrent connections. A widely used model that relies on recurrence is the ring attractor network, which has been used to describe phenomena as diverse as working memory, visual processing and head direction cells. Commonly, the synapses in these models are static. Here, we examine the behaviour of ring attractor networks when the recurrent connections are subject to short term synaptic depression, as observed in many brain regions. We find that in the presence of a uniform background current, the network activity can be in either of three states: a stationary attractor state, a uniform state, or a rotating attractor state. The rotation speed can be adjusted over a large range by changing the background current, opening the possibility to use the network as a variable frequency oscillator or pattern generator. Finally, using simulations we extend the network to two-dimensional fields and find a rich range of possible behaviours. © Springer Science+Business Media, LLC 2009.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know