Inferring Object Boundaries and Their Roughness with Uncertainty Quantification
Journal of Mathematical Imaging and Vision, ISSN: 1573-7683, Vol: 66, Issue: 6, Page: 977-992
2024
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
Article Description
This work describes a Bayesian framework for reconstructing the boundaries that represent targeted features in an image, as well as the regularity (i.e., roughness vs. smoothness) of these boundaries. This regularity often carries crucial information in many inverse problem applications, e.g., for identifying malignant tissues in medical imaging. We represent the boundary as a radial function and characterize the regularity of this function by means of its fractional differentiability. We propose a hierarchical Bayesian formulation which, simultaneously, estimates the function and its regularity, and in addition we quantify the uncertainties in the estimates. Numerical results suggest that the proposed method is a reliable approach for estimating and characterizing object boundaries in imaging applications, as illustrated with examples from high-intensity X-ray CT and image inpainting with Gaussian and Laplace additive noise models. We also show that our method can quantify uncertainties for these noise types, various noise levels, and incomplete data scenarios.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know