Preparation and performance of a novel multifunctional plasma electrolytic oxidation composite coating formed on magnesium alloy
Journal of Materials Science, ISSN: 0022-2461, Vol: 44, Issue: 8, Page: 1998-2006
2009
- 81Citations
- 60Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Plasma electrolytic oxidation (PEO) in an alkaline phosphate electrolyte was used to produce a novel multifunctional polytetrafluoroethylene (PTFE)-containing oxide composite coatings on AM60B magnesium alloys. The composition and microstructure of the PTFE-containing PEO coatings were analyzed by X-ray photoelectron spectroscope (XPS), X-ray diffraction (XRD), and scanning electron microscope (SEM). The electrochemical corrosion behavior, tribological properties, and wetting properties of the PTFE-containing PEO composite coatings were evaluated using potentiodynamic polarization measurements, a reciprocating ball-on-disk tribometer, and a contact angle meter, respectively. Results show that the PTFE-containing PEO composite coatings exhibited superior corrosion resistance, excellent self-lubricating property, and better hydrophobic property when compared with pure PEO coatings, and will be the attractive advanced materials for a wide range of functional applications. © 2009 Springer Science+Business Media, LLC.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=62949094554&origin=inward; http://dx.doi.org/10.1007/s10853-009-3291-4; https://link.springer.com/10.1007/s10853-009-3291-4; https://dx.doi.org/10.1007/s10853-009-3291-4; https://link.springer.com/article/10.1007/s10853-009-3291-4; http://www.springerlink.com/index/10.1007/s10853-009-3291-4; http://www.springerlink.com/index/pdf/10.1007/s10853-009-3291-4
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know