Reduced graphene oxide/CoSe nanocomposites: Hydrothermal synthesis and their enhanced electrocatalytic activity
Journal of Materials Science, ISSN: 0022-2461, Vol: 48, Issue: 22, Page: 7913-7919
2013
- 12Citations
- 10Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
Reduced graphene oxide (RGO)/CoSe nanocomposites were synthesized by self-assembly of CoSe/DETA (DETA: diethylenetriamine) onto the surface of graphene oxide (GO), followed by subsequent chemical reduction of GO during a hydrothermal process. The as-synthesized products were characterized by powder X-ray diffraction, energy dispersive X-ray spectroscopy, Raman spectra, scanning electron microscopy, and transmission electron microscopy. The morphology of the CoSe on the RGO nanosheets can be well controlled by adjusting the reaction time during the hydrothermal process. The catalytic activities of the RGO/CoSe nanocomposites were investigated for oxygen evolution reaction (OER) in alkaline conditions. It was found that the as-formed RGO/CoSe nanocomposites show higher catalytic activity compared with the unsupported CoSe. In addition, the loading amounts and morphologies of CoSe on RGO sheets have a great influence on the catalytic performance of RGO/CoSe. Our studies raise promising possibilities for designing effective OER electrocatalysts for energy conversion. © 2013 Springer Science+Business Media New York.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know