Numerical investigation on phase separation in polymer-modified bitumen: effect of thermal condition
Journal of Materials Science, ISSN: 1573-4803, Vol: 52, Issue: 11, Page: 6525-6541
2017
- 21Citations
- 20Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
With the aim to understand the effect of thermal condition on phase separation in polymer-modified bitumen (PMB), this paper numerically investigates four PMB binders under five thermal conditions between 140 and 180 °C. Based on a phase-field model previously developed by the authors for PMB phase separation, the updated model presented in this paper uses temperature-dependent parameters in order to approach the concerned temperature range, including mobility coefficients, interaction and dilution parameters. The model is implemented in a finite element software package and calibrated with the experimental observations of the four PMBs. The experimental results are well reproduced by the model, and it is thus believed that the calibrated parameters can represent the four PMBs. The simulation results indicate that the model proposed in this paper is capable of capturing the stability differences among the four PMBs and their distinct microstructures at different temperatures. Due to the transition of some PMBs from the thermodynamically stable state at 180 °C to the unstable state at 140 °C, a homogenization process may occur during the cooling applied numerically. After the transition, the PMBs start to separate into two phases and gradually form the binary structures controlled by the temperature. It is indicated that the cooling rate slightly affects the final pattern of the PMB binary microstructure, although the process can be more complicated in reality due to the potential dynamic reasons.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85012124110&origin=inward; http://dx.doi.org/10.1007/s10853-017-0887-y; http://link.springer.com/10.1007/s10853-017-0887-y; http://link.springer.com/content/pdf/10.1007/s10853-017-0887-y.pdf; http://link.springer.com/article/10.1007/s10853-017-0887-y/fulltext.html; https://dx.doi.org/10.1007/s10853-017-0887-y; https://link.springer.com/article/10.1007/s10853-017-0887-y
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know