PlumX Metrics
Embed PlumX Metrics

Electrochemical analysis of nanoporous carbons derived from activation of polypyrrole for stable supercapacitors

Journal of Materials Science, ISSN: 1573-4803, Vol: 53, Issue: 7, Page: 5229-5241
2018
  • 30
    Citations
  • 0
    Usage
  • 36
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

In this study, activated carbon was derived from polypyrrole (PPY) using a KCO activating agent with varying mass ratios of the activating agent to PPY polymer (AA:PP), for the optimization of the hierarchical pore structure necessary for improved electrochemical performance. The textural study of the as-synthesized samples (AC-PPY) displayed an increase in the specific surface area (SSA) and pore volume with increase in the amount of the activating agent up to a threshold for AA:PP of 6:1. The increase in the SSA was due to the presence of hierarchical pores in the material structure for efficient ion penetration. Initial half-cell electrochemical tests performed on the different activated carbon samples with varying SSA revealed superior charge storage capability for the 6:1 sample in both negative and positive operating potentials. The highest current response value was obtained from the signatory EDLC-type cyclic voltammogram, along with the longest discharge time from the chronopotentiometry plot as a result of the lowest ion diffusion length for successful fast ion transport reported from the impedance spectroscopy analysis. A full symmetric device (AC-PPY-6) assembled from the best material using KNO neutral electrolyte yielded a specific capacitance of 140 F g, 12.4 Wh kg energy density at 0.5 A g gravimetric current. An energy density of 7.12 Wh kg was still maintained at a specific current of 2 A g. Interestingly, after the ageing test to ascertain device stability, the device energy density increased back to 12.2 Wh kg as a result of the creation of additional active pores within the nanostructured material for charge storage via voltage holding tests which also led to the enhancement in specific capacitance to 137.5 F g at 2 A g. A 99.0% capacitance retention was recorded even after 10000 cycles at a moderate specific current of 2 A g. A substantial approach was used to elucidate the degradation phenomena from the device self-discharge profile, which showcased the device retaining up to 70% of its operating potential after 80 h (> 3 days) on open circuit. The results obtained demonstrate the potential of adopting the AC-PPY material in potential device for energy storage purposes.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know