Zn–ZnO@TiO nanocomposite: a direct electrode for nonenzymatic biosensors
Journal of Materials Science, ISSN: 1573-4803, Vol: 53, Issue: 10, Page: 7138-7149
2018
- 7Citations
- 15Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this article, TiO-modified ZnO nanotube arrays (NTAs) are successfully synthesized and used to prepare a nonenzymatic biosensor for the detection of glucose and hydrazine hydrate. In brief, the ZnO@TiO NTAs are synthesized on zinc foil by two steps of simple hydrothermal method. Therefore, it can be directly used as a working electrode and is not needed to be modified to other electrode surface by any means to form a sensor. In the oxidation of glucose and reduction reaction of hydrazine hydrate, it exhibits excellent electrocatalytic performance. Moreover, it has high sensitivity, a fast response time (less than 3 s), and a detection limit as low as 0.5 μM (S/N = 3) toward glucose and hydrazine hydrate respectively. In the selectivity of the target analyte, the Zn–ZnO@TiO nanocomposite electrode can effectively resist the influence of different interferent, including uric acid, dopamine, and l-cysteine.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know