Gene delivery using layer-by-layer functionalized multi-walled carbon nanotubes: design, characterization, cell line evaluation
Journal of Materials Science, ISSN: 1573-4803, Vol: 56, Issue: 11, Page: 7022-7033
2021
- 13Citations
- 8Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Multi-walled carbon nanotubes (MWCNTs) with special nanoneedle structure have emerged as new promising candidates for plasmid and drug delivery. However, the delivery is greatly limited by the high tendency of CNT to form aggregates, the “less dispersion problem,” and CNT cytotoxicity. Here, we described an extensive evaluation of the ability of layer-by-layer modification strategy to reduce CNT size and toxicity, and to shield CNT hydrophobic surfaces. The MWCNTs can be derivatized with carboxylate groups (cMWCNT) and sequentially functionalized with protein, cationic polyethylenimine (PEI), and polysaccharide. The protein coating, characterized by Fourier transform infrared and deconvolution methods, could serve as the hydrophilic, biocompatible matrix and scaffold for sequential conjugation. We found that coated PEI-enhanced electrostatic interactions between plasmid DNA and CNTs. The functionalized cMWCNTs were analyzed by thermogravimetric analysis, dynamic light scattering, and electron microscopy technologies. The conjugation of cMWCNTs–ovalbumin–PEI with oxidized pectin further promoted green fluorescence intensity by balancing the intracellular DNA release and were easier to disperse. Our in-depth study demonstrated that functionalized CNTs can be improved by fine-tuned process parameters of the protein–PEI–polysaccharide modification.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85100107362&origin=inward; http://dx.doi.org/10.1007/s10853-020-05648-6; http://link.springer.com/10.1007/s10853-020-05648-6; http://link.springer.com/content/pdf/10.1007/s10853-020-05648-6.pdf; http://link.springer.com/article/10.1007/s10853-020-05648-6/fulltext.html; https://dx.doi.org/10.1007/s10853-020-05648-6; https://link.springer.com/article/10.1007/s10853-020-05648-6
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know