Virtual texture analysis to investigate the deformation mechanisms in metal microstructures at the atomic scale
Journal of Materials Science, ISSN: 1573-4803, Vol: 57, Issue: 23, Page: 10549-10568
2022
- 14Citations
- 14Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Understanding the deformation behavior of metallic materials at high strain rates requires the characterization of plasticity contributors, such as twins, phase transformed regions, and dislocations. However, predicting the contributions from phase transformation and twinning relies on a complete understanding of the selection of variants for various loading orientations and the evolution of their volume fractions. This manuscript presents a new virtual texture (VirTex) analysis approach to characterize phase transformation and twinning variants in deformed microstructures generated using molecular dynamics (MD) simulations. The VirTex method involves the construction of a rotation matrix to calculate the angle/axis pairs and misorientation angles for each atom in the microstructure. Any changes in the orientation angle from angle/axis pairs and/or structure types are analyzed to determine the nucleation and evolution of variants in the microstructure. The study uses shock deformed single-crystal Fe, Ta, and Cu to analyze the variant selections for phase transformation or twinning or both in BCC and FCC systems. In addition, the VirTex analysis is able to characterize the phase transformation and twinning variants in nanocrystalline Fe and Ta microstructures. Besides characterizing variants, orientation mapping also provides an accelerated and on-the-fly approach for quantifying twin fractions in MD microstructures. Graphical abstract: [Figure not available: see fulltext.].
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know