Coal polymer composites prepared by fused deposition modeling (FDM) 3D printing
Journal of Materials Science, ISSN: 1573-4803, Vol: 57, Issue: 22, Page: 10141-10152
2022
- 11Citations
- 21Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Coal is a vital energy resource worldwide, but pollutants and greenhouse gases from its combustion cause environmental problems. To explore the non-combustion approach to use and valorize coal, anthracite and lignite were blended with polyamide 12 (PA 12) through FDM printing in this work and compared in the composites. By adding lignite, Young’s modulus improved with increasing loading to 50 wt% while tensile strength leveled off among the composites, compared to that of PA 12. By contrast, the addition of anthracite decreased the tensile performance at all loadings. Rheology tests and morphology analyses suggested that the interactions between fillers (anthracite and lignite) and PA 12 may cause differences in tensile properties. In addition, the printed lignite composites showed improved thermal conductivity (~ twofold), indicating lignite demonstrates the potential to build functional composites. This work provides a strategy to use lignite in composites by 3D printing for value-added products and reduces the demand for petroleum-based polymers. Our approach diverts lignite from combustion processes and alleviates the negative impact of lignite use on the environment. Graphical abstract: [Figure not available: see fulltext.].
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know