Enhancing the intergranular corrosion resistance and mechanical properties of Al–Mg–xSi–Cu–Zn alloys by synergistic intergranular and intragranular precipitation behaviors
Journal of Materials Science, ISSN: 1573-4803, Vol: 57, Issue: 30, Page: 14490-14510
2022
- 4Citations
- 5Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The intergranular corrosion (IGC) resistance of age-hardening Al–Mg–Si–Cu alloys is closely related to the precipitation behavior adjacent to grain boundaries. In this study, we proposed to regulate the interaction of solute atoms and solute partitioning of Zn-containing Al–Mg–xSi–Cu alloys by introducing dislocations, which can synergistically decorate the intergranular and intragranular precipitation behavior. Consequently, the continuity of grain boundary precipitates and width of solute-depleted precipitate-free zones are inhibited accompanied with high number density or coarse precipitate in the matrix. As a result, the IGC resistance is greatly improved without strength and ductility loss, and the related mechanism has been proposed.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know