A review of low-cost approaches to synthesize graphene and its functional composites
Journal of Materials Science, ISSN: 1573-4803, Vol: 58, Issue: 10, Page: 4359-4383
2023
- 13Citations
- 23Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Two-dimensional (2D) materials have sought intensive research attention from diverse scientific disciplines due to their unique and exciting properties. The most well-known 2D material is graphene that finds applications in various physical and life sciences fields. There has been a surge in the protocols available to synthesize graphene during the last two decades. Furthermore, several of these protocols have been revisited to improve the quality and yield of graphene that has resulted in a large body of literature. Young researchers, however, may not be entirely aware of these approaches. This review attempts to highlight the synthesis schemes that students and researchers could quickly adopt—even those having limited access to sophisticated tools. This review focuses on the top-down synthesis schemes that use low-end readily available equipment, benefitting the inexperienced and under-equipped researchers. This review's primary goal is to reach out to the young students, researchers, and technocrats working in diverse fields (not limited to nanoscience), to provide them with a roadmap for graphene synthesis. We will also present students entering academia with exciting applications that can be undertaken in university laboratories and high schools. Graphical abstract: [Figure not available: see fulltext.].
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know