Design and chemical engineering of carbazole-based donor small molecules for organic solar cell applications
Journal of Materials Science: Materials in Electronics, ISSN: 1573-482X, Vol: 29, Issue: 17, Page: 14842-14851
2018
- 7Citations
- 17Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A serious of carbazole-based acceptor-donor-acceptor (A-D-A) type small molecules have been designed, synthesized and characterized for efficient bulk heterojunction organic solar cell (BHJ OSCs) applications. The synthesized molecules have an electron-rich carbazole unit acting as the electron donor (D) and an electron deficient phenylcyanovinylene unit acting as an electron acceptor to assembled A-D-A type conjugated small molecules (FHCS, NHCS, FBCS, and NBCS). The effect of chemical engineering in designed small molecules through fluorination, nitration and introducing alkyl chain has been studied in view of their optical, physio-chemical and photovoltaic properties. The NHCS and NBCS show broader absorption as compared to the FHCS and FBHS due to the strong electron withdrawing ability of the nitro groups. Interestingly, it was found that the alkyl chain did not affect the thermal and photophysical properties of these small molecules, but it has good impact on the energy level and photovoltaic properties. The FHCS and NHCS molecules showed a deep-lying HOMO energy level of − 5.21 eV, as compared to the FBCS and NBCS. NHCS and NBCS molecules showed low band gaps of 1.81 and 1.77 eV, respectively. The organic photovoltaic device fabricated with the configuration of ITO/PEDOT:PSS/donor:PC61BM/LiF/Al, exhibited the best device performance for the NBCS molecules with: the short circuit current (JSC) of 4.35 mA cm, open circuit voltage (VOC) of 0.75 V, fill factor (FF) of 30.07, and power conversion efficiency of ~ 1%.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85049583820&origin=inward; http://dx.doi.org/10.1007/s10854-018-9621-z; http://link.springer.com/10.1007/s10854-018-9621-z; http://link.springer.com/content/pdf/10.1007/s10854-018-9621-z.pdf; http://link.springer.com/article/10.1007/s10854-018-9621-z/fulltext.html; https://dx.doi.org/10.1007/s10854-018-9621-z; https://link.springer.com/article/10.1007/s10854-018-9621-z
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know