Photo-stability of perovskite solar cells with Cu electrode
Journal of Materials Science: Materials in Electronics, ISSN: 1573-482X, Vol: 30, Issue: 10, Page: 9582-9592
2019
- 12Citations
- 29Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Towards higher stability of perovskite solar cells, Cu has been observed to be more suitable electrode material compared to conventional Al and Ag electrodes. The photo-stability of such devices has not been explored much in the literature, therefore we present here the investigation carried out towards the photo-stability of PSCs based on top Cu electrodes. The PSCs were prepared in normal geometry and stored in dark, under continuous illumination of a white LED lamp inside the laboratory and under direct sunlight outside the laboratory and tested as per the international summit on organic photovoltaics stability protocols. In dark storage the encapsulated solar cells exhibited highest stability but under illumination they exhibited degradation in their performance and the degradation was fastest in the direct sunlight. Degradation under illumination has been attributed to the photo-oxidation of the perovskite film. Cu has been observed to diffuse into and react with the underlying perovskite film and the ultraviolet and infrared contents in direct sunlight accelerated the photo-oxidation and chemical reactions between Cu and perovskite film. The chemical reactions of Cu electrode with perovskite constituents made it disappear after some time. These investigations suggest that Cu too is not a very stable electrode material for PSCs under natural operating conditions.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85064258706&origin=inward; http://dx.doi.org/10.1007/s10854-019-01292-2; http://link.springer.com/10.1007/s10854-019-01292-2; http://link.springer.com/content/pdf/10.1007/s10854-019-01292-2.pdf; http://link.springer.com/article/10.1007/s10854-019-01292-2/fulltext.html; https://dx.doi.org/10.1007/s10854-019-01292-2; https://link.springer.com/article/10.1007/s10854-019-01292-2
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know