FeO nanoparticle decorated novel magnetic metal oxide microcomposites for the catalytic degradation of 4-nitrophenol for wastewater cleaning applications
Journal of Materials Science: Materials in Electronics, ISSN: 1573-482X, Vol: 33, Issue: 2, Page: 1039-1053
2022
- 15Citations
- 20Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
CoO NiO and ZnO microparticles were decorated with FeO nanoparticles where novel CoO@FeO, NiO@FeO and ZnO@FeO microcomposites were obtained with significant magnetic properties. Decorating microparticles with FeO nanoparticles helped us to obtain microcomposites with outstanding magnetic characteristics, since FeO nanoparticles were decorated on the upper shell of the microstructures where the magnetic characteristics of the composites were not suppressed, and good catalytic performance was obtained. SEM was used to assess the physical morphology of the microparticles which indicate that microparticles were in flower or ball-like shape. Magnetic properties were checked using VSM which revealed that magnetic composites are in ferromagnetic characteristics. Optic characteristics of the particles were checked by UV–Vis spectrometry to assess bandgap energies which indicate that doping microparticles with FeO slightly alters the bandgap energies of microparticles. The catalytic role of microparticles and microcomposites for the catalytic reduction of 4-nitrophenol to 4-aminophenol was studied.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know