GaSb/Mn multilayers structures fabricated by DC magnetron sputtering: Interface feature and nano-scale surface topography
Journal of Materials Science: Materials in Electronics, ISSN: 1573-482X, Vol: 33, Issue: 10, Page: 8159-8170
2022
- 1Citations
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The multilayer structure is a well-studied architecture for electronic and optoelectronic applications and more recently in spintronic devices. In this work, we present the structural, morphological, topographical, and magnetic properties of GaSb/Mn multilayers deposited via DC magnetron sputtering at room temperature and 423 K. Raman measurements evidence the formation of p-type GaSb layers with a contribution of electrons in the multilayer due to the neighboring Mn layer and the formation of effective interlayers. HR-SEM measurements show the multilayer architecture with columnar microstructure in the layer’s formation, while AFM micrographs allowed observing the changes in grain sizes (between 129 and 187 nm) and roughness (between 1.47 nm and 6.28 nm) with increasing number of layers. The formation of the interlayers between the GaSb and Mn layer was assayed in-depth spectroscopically via Rutherford backscattering studies. These interlayers were associated with diffusion processes during deposition and contributed to the magnetic behavior of multilayers. A ferromagnetic-like behavior was observed in the multilayers.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know