Novel self-assembled amphiphilic poly(ε-caprolactone)-grafted- poly(vinyl alcohol) nanoparticles: Hydrophobic and hydrophilic drugs carrier nanoparticles
Journal of Materials Science: Materials in Medicine, ISSN: 0957-4530, Vol: 20, Issue: 3, Page: 821-831
2009
- 62Citations
- 64Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations62
- Citation Indexes62
- 62
- CrossRef36
- Captures64
- Readers64
- 64
Article Description
In the present study, we have aimed to produce nanoparticles (NPs) possessing the capability of carrying both of the hydrophobic and hydrophilic drugs and reveal significant release for both drug types. Poly(ε- caprolactone) (PCL) grafted poly(vinyl alcohol) (PVA) copolymer (PCL-g-PVA) has been prepared and shaped in nano-particulate form to be adequate for carrying the drugs. Stannous octoate (Sn(II)Oct) was used to catalyze PVA and ε-caprolactone monomer to chemically bond. Moreover, this catalyst enhanced side chain polymerization reaction for the utilized ε-caprolactone monomer to form poly(ε-caprolactone) (PCL). The formed PCL was attached as branches with PVA backbone. H NMR has confirmed formation of PCL and grafting of PVA by this new polymer. Moreover, the vibration modes in the functional groups of PCL-g-PVA have been detected by FT-IR. The thermal alteration in the grafted polymer was checked by TGA analysis. The successfully synthesized grafted copolymer was able to self-aggregate into NPs by direct dialysis method. The size, morphology and charges associated with the obtained NPs were analyzed by DLS, TEM and ELS, respectively. PCL-g-PVA NPs were investigated as drug carrier models for hydrophobic and hydrophilic anti cancer drugs; paclitaxel and doxorubicin. In vitro drug release experiments were conducted; the loaded NPs reveal continuous and sustained release form for both drugs, up to 20 and 15 days for paclitaxel and doxorubicin, respectively. However, in a case of using pure drugs only, both drugs completely released within 1-2 h. The overall obtained results strongly recommend the use these novel NPs in future drug delivery systems. © 2008 Springer Science+Business Media, LLC.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=60549083083&origin=inward; http://dx.doi.org/10.1007/s10856-008-3637-5; http://www.ncbi.nlm.nih.gov/pubmed/19020953; http://link.springer.com/10.1007/s10856-008-3637-5; http://www.springerlink.com/index/10.1007/s10856-008-3637-5; http://www.springerlink.com/index/pdf/10.1007/s10856-008-3637-5; https://dx.doi.org/10.1007/s10856-008-3637-5; https://link.springer.com/article/10.1007/s10856-008-3637-5
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know