In-phase and anti-phase bursting dynamics and synchronisation scenario in neural network by varying coupling phase
Journal of Biological Physics, ISSN: 1573-0689, Vol: 49, Issue: 3, Page: 345-361
2023
- 3Citations
- 3Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We have analysed the synchronisation scenario and the rich spatiotemporal patterns in the network of Hindmarsh-Rose neurons under the influence of self, mixed and cross coupling of state variables which are realised by varying coupling phase. We have introduced a coupling matrix in the model to vary coupling phase. The excitatory and inhibitory couplings in the membrane potential induce in-phase and anti-phase bursting dynamics, respectively, in the two coupled system. When the off-diagonal elements of the matrix are zero, the system shows self coupling of the three variables, which helps to attain synchrony. The off-diagonal elements give cross interactions between the variables, which reduces synchrony. The stability of the synchrony attained is analysed using Lyapunov function approach. In our study, we found that self coupling in three variables is sufficient to induce chimera states in non-local coupling. The strength of incoherence and discontinuity measure validates the existence of chimera and multichimera states. The inhibitor self coupling in local interaction induces interesting patterns like Mixed Oscillatory State and clusters. The results may help in understanding the spatiotemporal communications of the brain, within the limitations of the size of the network analysed in this study.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85159664856&origin=inward; http://dx.doi.org/10.1007/s10867-023-09635-1; http://www.ncbi.nlm.nih.gov/pubmed/37195336; https://link.springer.com/10.1007/s10867-023-09635-1; https://dx.doi.org/10.1007/s10867-023-09635-1; https://link.springer.com/article/10.1007/s10867-023-09635-1
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know