Combined Immunodeficiency Caused by a Novel De Novo Gain-of-Function RAC2 Mutation
Journal of Clinical Immunology, ISSN: 1573-2592, Vol: 42, Issue: 6, Page: 1280-1292
2022
- 7Citations
- 12Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations7
- Citation Indexes7
- CrossRef1
- Captures12
- Readers12
- 12
Article Description
Ras-related C3 botulinum toxin substrate 2 (RAC2) is a GTPase exclusively expressed in hematopoietic cells that acts as a pivotal regulator of several aspects of cell behavior via various cellular processes. RAC2 undergoes a tightly regulated GTP-binding/GTP-hydrolysis cycle, enabling it to function as a molecular switch. Mutations in RAC2 have been identified in 18 patients with different forms of primary immunodeficiency, ranging from phagocyte defects caused by dominant negative mutations to common variable immunodeficiency resulting from autosomal recessive loss-of-function mutations, or severe combined immunodeficiency due to dominant activating gain-of-function mutations. Here, we describe an 11-year-old girl with combined immunodeficiency presenting with recurrent respiratory infections and bronchiectasis. Immunological investigations revealed low T-cell receptor excision circle/K-deleting recombination excision circles numbers, lymphopenia, and low serum immunoglobulin G. Targeted next-generation sequencing identified a novel heterozygous mutation in RAC2, c.86C > G (p.P29R), located in the highly conserved Switch I domain. The mutation resulted in enhanced reactive oxygen species production, elevated F-actin content, and increased RAC2 protein expression in neutrophils, as well as increased cytokine production and a dysregulated phenotype in T lymphocytes. Furthermore, the dominant activating RAC2 mutation led to accelerated apoptosis with augmented intracellular active caspase 3, impaired actin polarization in lymphocytes and neutrophils, and diminished RAC2 polarization in neutrophils. We present a novel RAC2 gain-of-function mutation with implications for immunodeficiency and linked to functional dysregulation, including abnormal apoptosis and cell polarization arising from altered RAC2 expression. Thus, our findings broaden the spectrum of known RAC2 mutations and their underlying mechanisms.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85130291111&origin=inward; http://dx.doi.org/10.1007/s10875-022-01288-4; http://www.ncbi.nlm.nih.gov/pubmed/35596857; https://link.springer.com/10.1007/s10875-022-01288-4; https://dx.doi.org/10.1007/s10875-022-01288-4; https://link.springer.com/article/10.1007/s10875-022-01288-4
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know