Fluorescence Carbon Dots from Blood-Berries for Sensing Cr Ions in Water and Application in White Light Emitting Diode
Journal of Fluorescence, ISSN: 1573-4994
2024
- 2Citations
- 6Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Conventional techniques for identifying heavy metal ions in water are laborious and time-consuming. Therefore, it is necessary to create innovative sensing technologies that can detect with greater sensitivity and speed. Although there have been reports of optical-based assays utilising fluorescent nanomaterials, these assays usually rely on variations in signal strength. However, this approach has significant drawbacks when it comes to environmental monitoring. Fluorescence carbon dots (CDs) have been prepared by facile synthesis from Blood berries. A homemade heavy metal optical detector is constructed to accurately identify heavy metal ions, exclusively Cr ions in a water medium. Their optical emission signature varies based on the specific chromium ions in solution, and the emission intensity also changes depending on its concentration. The quenching behaviour is attributed to the interaction between the metallic cations and the fluorescent surface states of the carbon dots. Another application is the encapsulation of CDs in PVDF polymer to form a flexible film and use it as a phosphor for LED conversion.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85203429301&origin=inward; http://dx.doi.org/10.1007/s10895-024-03916-1; http://www.ncbi.nlm.nih.gov/pubmed/39254817; https://link.springer.com/10.1007/s10895-024-03916-1; https://dx.doi.org/10.1007/s10895-024-03916-1; https://link.springer.com/article/10.1007/s10895-024-03916-1
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know