A Novel High-Conjugated Probe of 4-(Acridone-10-yl)-Phenylethyl Chloroformate (APE-Cl) for Rapid Detection of Amino Compounds Using HPLC with Fluorescence Detection
Journal of Fluorescence, ISSN: 1573-4994
2025
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
Article Description
The fluorescence detection of amino compounds and the evaluation of their content in environmental samples are vital, not only for assessing food quality but also for studying soil organic matter. Here, we present the synthesis and application of a novel fluorescent probe, 4-(9-acridone)benzylmethyl carbonochloride (APE-Cl), for detecting amino compounds via a chloroformate reaction with fluorescence detection. The complete derivatization reaction of APE-Cl with amino compounds can be accomplished in aqueous acetonitrile within 5 min at room temperature, using 0.2 M borate buffer (pH = 9.0). APE-amine derivatives exhibited intense fluorescence with an excitation maximum at λex 254 nm and an emission maximum at λem 418 nm. All derivatives demonstrated high stability, strong fluorescence, and elevated ionization potential under atmospheric pressure chemical ionization (APCI-MS) in positive ion detection mode. The method, combined with gradient elution, provides baseline resolution of common amine derivatives on a reversed-phase C18 column. The LC separation for the derivatized amines shows good reproducibility with aqueous acetonitrile as the mobile phase. The relative standard deviations (n = 6) for each amine derivative are < 3.99%. The detection limits (at a signal-to-noise ratio of 3) per injection ranged from 1.68 to 11.2 femtomole. The established pre-column derivatization method for determining amino compounds in practical samples proved to be satisfactory.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85217157696&origin=inward; http://dx.doi.org/10.1007/s10895-024-04098-6; http://www.ncbi.nlm.nih.gov/pubmed/39804560; https://link.springer.com/10.1007/s10895-024-04098-6; https://dx.doi.org/10.1007/s10895-024-04098-6; https://link.springer.com/article/10.1007/s10895-024-04098-6
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know