Enhanced Photocatalytic Performance of Zinc Ferrite Nanocomposites for Degrading Methylene Blue: Effect of Nickel Doping Concentration
Journal of Inorganic and Organometallic Polymers and Materials, ISSN: 1574-1451, Vol: 31, Issue: 8, Page: 3496-3504
2021
- 32Citations
- 31Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In the present work, undoped and nickel doped zinc ferrite (ZnFeNiO) nano-composites were synthesized using a facile auto-combustion method using glycine as fuel. Effects of Ni dopant concentration and annealing process on structural and morphological properties were investigated by X-ray Diffraction (XRD), Raman spectroscopy, Fourier Transform InfraRed (FTIR) spectroscopy, and Scanning Electron Microscopy/Energy-dispersive X-ray spectroscopy (SEM/EDS). The formation of cubic spinel ferrites is confirmed by XRD analysis while asserting particles with a size range of 55–58 nm. Analysis of Raman spectra showed a transition of normal to inverse spinel-type with the increase in Ni content. Photocatalytic studies of as-synthesized nanoparticles using methylene blue (MB) demonstrated a strong correlation between photocatalytic efficiency and Ni doping. Ni-doped zinc-ferrites exhibited 98% photocatalytic efficiency at an optimum Ni doping concentration of 30%. As-synthesized ferrites have the potential to be used as an efficient, reusable, and magnetically removable photocatalyst system for removing organic pollutants.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know