PlumX Metrics
Embed PlumX Metrics

Nano-Porous Composites of Activated Carbon–Metal Organic Frameworks (Fe-BDC@AC) for Rapid Removal of Cr (VI): Synthesis, Adsorption, Mechanism, and Kinetics Studies

Journal of Inorganic and Organometallic Polymers and Materials, ISSN: 1574-1451, Vol: 32, Issue: 5, Page: 1924-1934
2022
  • 40
    Citations
  • 0
    Usage
  • 49
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    40
    • Citation Indexes
      40
  • Captures
    49

Article Description

Metal–organic frameworks (MOFs) are a group of porous materials that display potential in the elimination of toxic industrial compounds (TICs) from polluted water streams. However, their applications have so far been held up by issues due to their physical nature and cost. In this study, activated carbon (AC) is modified with an Fe-based MOF, iron terephthalate (Fe-BDC). A facile and cost-effective impregnation method is used for enhanced removal from aqueous solutions. The new adsorbent is characterized by SEM, FTIR, PXRD, and BET. The composite displays excellent uptake of Cr (VI) when compared to un-impregnated AC with a maximum monolayer adsorption capacity of 100 mg·g. The experimental data shows a high correlation to the Langmuir adsorption model. The adsorption kinetic study reveals that the adsorption of Cr (VI) to Fe-BDC@AC obeys the pseudo-first-order equation. The composite shows high reusability after five cycles and high adsorption rates reaching equilibrium in just 50 min. Such properties make the nanocomposite promising for water decontamination on larger scales compared to powder-based alternatives, such as individual MOF crystals.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know