Optical Design and Characterization of 40-GHz Detector and Module for the BICEP Array
Journal of Low Temperature Physics, ISSN: 1573-7357, Vol: 199, Issue: 3-4, Page: 1118-1126
2020
- 5Citations
- 3Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Families of cosmic inflation models predict a primordial gravitational-wave background that imprints B-mode polarization pattern in the cosmic microwave background (CMB). High-sensitivity instruments with wide frequency coverage and well-controlled systematic errors are needed to constrain the faint B-mode amplitude. We have developed antenna-coupled transition edge sensor arrays for high-sensitivity polarized CMB observations over a wide range of millimeter-wave bands. BICEP array, the latest phase of the BICEP/Keck experiment series, is a multi-receiver experiment designed to search for inflationary B-mode polarization to a precision σ(r) between 0.002 and 0.004 after 3 full years of observations, depending on foreground complexity and the degree of lensing removal. We describe the electromagnetic design and measured performance of BICEP array’s low-frequency 40-GHz detector, their packaging in focal plane modules, and optical characterization including efficiency and beam matching between polarization pairs. We summarize the design and simulated optical performance, including an approach to improve the optical efficiency due to mismatch losses. We report the measured beam maps for a new broadband corrugation design to minimize beam differential ellipticity between polarization pairs caused by interactions with the module housing frame, which helps minimize polarized beam mismatch that converts CMB temperature to polarization (T→ P) anisotropy in CMB maps.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85079622022&origin=inward; http://dx.doi.org/10.1007/s10909-019-02299-z; http://link.springer.com/10.1007/s10909-019-02299-z; http://link.springer.com/content/pdf/10.1007/s10909-019-02299-z.pdf; http://link.springer.com/article/10.1007/s10909-019-02299-z/fulltext.html; https://dx.doi.org/10.1007/s10909-019-02299-z; https://link.springer.com/article/10.1007/s10909-019-02299-z
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know