Feasibility study for applying the lower-order derivative fast Padé transform to measured time signals
Journal of Mathematical Chemistry, ISSN: 1572-8897, Vol: 58, Issue: 1, Page: 146-177
2020
- 13Citations
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Magnetic resonance spectroscopy (MRS), as a powerful and versatile diagnostic modality in physics, chemistry, medicine and other basic and applied sciences, depends critically upon reliable signal processing. It provides time signals by encoding, but cannot quantify on its own. Mathematical methods do so. The signal processor of choice for MRS is the fast Padé transform (FPT). The spectrum in the FPT is the unique polynomial quotient for the given Maclaurin expansion. The parametric FPT (parameter estimator) performs quantification of time signals encoded with MRS by explicitly solving the spectral analysis problem. Thus far, the non-parametric FPT (shape estimator) could not quantify. However, the non-parametric derivative fast Padé transform (dFPT) can quantify despite performing shape estimation alone. The dFPT was successfully benchmarked on synthesized MRS time signals for derivative orders ranging from 1 to 50. It simultaneously improved resolution (by splitting apart tightly overlapped peaks) and enhanced signal-to-noise ratio (by suppressing the background baseline). The same advantageous features of improving both resolution and signal-to-noise ratio are presently found to be upheld with encoded MRS time signals. Moreover, it is demonstrated that the dFPT hugely outperforms the derivative fast Fourier transform even for derivatives of orders as low as four. The clinical implications are discussed.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85075982219&origin=inward; http://dx.doi.org/10.1007/s10910-019-01077-2; http://link.springer.com/10.1007/s10910-019-01077-2; http://link.springer.com/content/pdf/10.1007/s10910-019-01077-2.pdf; http://link.springer.com/article/10.1007/s10910-019-01077-2/fulltext.html; https://dx.doi.org/10.1007/s10910-019-01077-2; https://link.springer.com/article/10.1007/s10910-019-01077-2
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know