Quantum-mechanical four-body versus semi-classical three-body theories for double charge exchange in collisions of fast alpha particles with helium targets
Journal of Mathematical Chemistry, ISSN: 1572-8897, Vol: 62, Issue: 3, Page: 606-633
2024
- 2Citations
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations2
- Citation Indexes2
Article Description
Within the two-channel distorted wave second-order perturbative theoretical formalism, we study capture of both electrons from helium-like targets by heavy nuclei as projectiles at intermediate and high impact energies. The emphasis is on the four-body single-double scattering (SDS-4B) method and the three-body continuum distorted wave impact parameter method (CDW-3B-IPM). The SDS-4B method deals with the full quantum-mechanical correlative dynamics of all the four interactively participating particles (two electrons, two nuclei). The CDW-3B-IPM is a semi-classical three-body independent particle model (one electron, two nuclei), using a combinatorial calculus to describe double capture by a product of two uncorrelated probabilities, integrated over impact parameters. Both theories share a common feature in having altogether two electronic full Coulomb continuum wave functions. One such function is centered on the projectile nucleus in the entrance channel, whereas the other is centered on the target nucleus in the exit channel. These two methods satisfy the correct initial and final Coulomb boundary conditions in the asymptotic region of scattering, at infinitely large inter-particle separations. Yet, it is presently demonstrated that most of the available experimental data on total cross sections for the double capture from helium by alpha particles distinctly favor the SDS-4B method. This is especially true at intermediate energies. Such energies are critically important in versatile applications under the general umbrella of ion transport in matter, including thermonuclear fusion (plasma physics) and ion therapy (medicine).
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know