Empirically exploring the space of monostationarity in dual phosphorylation
Journal of Mathematical Chemistry, ISSN: 1572-8897, Vol: 63, Issue: 3, Page: 666-692
2025
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The dual phosphorylation network provides an essential component of intracellular signaling, affecting the expression of phenotypes and cell metabolism. For particular choices of kinetic parameters, this system exhibits multistationarity, a property that is relevant in the decision-making of cells. Determining which reaction rate constants correspond to monostationarity and which produce multistationarity is an open problem. The system’s monostationarity is linked to the nonnegativity of a specific polynomial. A previous study by Feliu et al. provides a sufficient condition for monostationarity via a decomposition of this polynomial into nonnegative circuit polynomials. However, this decomposition is not unique. We extend their work by a systematic approach to classifying such decompositions in the dual phosphorylation network. Using this classification, we provide a qualitative comparison of the decompositions into nonnegative circuit polynomials via empirical experiments and improve on previous conditions for the region of monostationarity.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know