An Efficient Spectral-Galerkin Method for Elliptic Equations in 2D Complex Geometries
Journal of Scientific Computing, ISSN: 1573-7691, Vol: 95, Issue: 3
2023
- 9Citations
- 5Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A polar coordinate transformation is considered, which transforms the complex geometries into a unit disc. Some basic properties of the polar coordinate transformation are given. As applications, we consider the elliptic equation in two-dimensional complex geometries. The existence and uniqueness of the weak solution are proved, the Fourier–Legendre spectral-Galerkin scheme is constructed and the optimal convergence of numerical solutions under H -norm is analyzed. The proposed method is very effective and easy to implement for problems in 2D complex geometries. Numerical results are presented to demonstrate the high accuracy of our spectral-Galerkin method.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know