An Efficient and Decentralized Fuzzy Reinforcement Learning Bandwidth Controller for Multitenant Data Centers
Journal of Network and Systems Management, ISSN: 1573-7705, Vol: 30, Issue: 4
2022
- 4Citations
- 5Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Cloud service providers rely on bandwidth overprovisioning to avoid Service Level Agreements’ violation (SLAs) when allocating tenants’ resources in multitenant cloud environments. Tenants’ network usage is usually dynamic, but the shared resources are often allocated statically and in batches, causing resource idleness. This paper envisions an opportunity for optimizing cloud service networks. As such, we propose an autonomous bandwidth allocation mechanism based on Fuzzy Reinforcement Learning (FRL) to reduce the idleness of cloud network resources. Our mechanism dynamically allocates resources, prioritizing tenants and allowing them to exceed the contracted bandwidth temporarily without violating the SLAs. We assess our mechanism by comparing FRL usage against pure Fuzzy Inference System (FIS) and pure Reinforcement Learning (RL). The evaluation scenario is an emulation in which tenants share resources from a cloud provider and generate traffic based on real HTTP traffic. The results show that our mechanism increases tenant’s cloud network utilization by 30% compared to FIS while maintaining the cloud traffic load within a healthy threshold and more stable than RL.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know