Synthesis and Characterization of Novel Star-Shaped Itaconic Acid Based Thermosetting Resins
Journal of Polymers and the Environment, ISSN: 1566-2543, Vol: 26, Issue: 5, Page: 2072-2085
2018
- 19Citations
- 26Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A star-shaped thermoset resin was synthesized by direct condensation reaction of itaconic acid and glycerol (star-Ita.Gly). In order to decrease the viscosity of the resin, the carboxyl groups of the oligomers were reacted with ethanol (Tstar-Ita.Gly). Chemical structures of the resins were studied by H and C NMR and Fourier-transform infrared spectroscopy (FT-IR). The curing process was optimized by studying the residual exotherms during the curing process. Thermomechanical properties of the cured samples were studied by Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA). Thermogravimetric analyses (TGA) were also carried out on both treated and pure resins to study the thermal stability of the cured samples. The viscosity of both resins were measured at different temperatures and different stress levels. Water adsorption tests were also carried out to check the water absorption properties of Tstar-Ita.Gly’s cured samples. The viscosity of the star-Ita.Gly was 154.9 Pa s at room temperature which dropped to 1.8 Pa s upon increasing the temperature to 70 °C. The viscosity of the Tstar-Ita.Gly resin was 0.35 Pa s at room temperature, and 0.04 Pa s at 70 °C. The glass temperature (T) of the alcohol-treated resin was 122 °C. Fully biobased content and inexpensive raw materials, biodegradability, very good thermomechanical and comparably very promising rheological properties and processability along with good thermal stability are of advantages of the synthesized resin which make the resin comparable with other thermosetting systems as well as the commercial unsaturated polyester resins.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know