A Review on the Transformative Effects of Extrusion Parameters on Poly(Butylene adipate-co-terephthalate)/Poly(Lactic acid) Blends in 3D Printing
Journal of Polymers and the Environment, ISSN: 1572-8919, Vol: 33, Issue: 2, Page: 631-659
2025
- 1Citations
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Extrusion-based 3D printing stands out as one of the most widespread additive manufacturing techniques, finding applications across engineering and medical sectors, primarily owing to its use of thermoplastic polymers. While poly(lactic acid) (PLA) remains among the most widely used bio-based compostable polymers in material extrusion, its inherent brittleness imposes limitations in sectors requiring more flexible and ductile materials. In this context, the combination of PLA with poly(butylene adipate-co-terephthalate) (PBAT) results in more flexible compostable blends, broadening the scope of advanced applications of 3D-printed parts while upholding sustainability standards. Despite the considerable potential of PLA/PBAT blends, research on their use in material extrusion 3D printing remains limited, highlighting an opportunity for significant advancements in the near future. Therefore, this article provides a detailed review of the influence of printing parameters on the properties of 3D-printed PLA/PBAT blends. It begins with a brief overview of the synthesis methods of PLA and PBAT, and their blend compatibilization strategies, showcasing advancements in the pursuit of versatile and sustainable materials. Furthermore, it also examines potential applications while identifying research gaps that can steer future investigations. In essence, this review not only provides valuable insights for optimizing the printing parameters of these blends in extrusion-based 3D printing but also contributes to the development of more adaptable and sustainable materials, holding substantial promise across various technological domains.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know