Angular-Dependent Hysteresis Properties in the Ising-Type Multilayer Nanowire
Journal of Superconductivity and Novel Magnetism, ISSN: 1557-1947, Vol: 30, Issue: 1, Page: 227-236
2017
- 7Citations
- 3Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In the present study, the magnetic configurations of magnetic nanostructure consisting of alternate magnetic and non-magnetic layers arranged within a multilayer nanowire structure are investigated. We report the angular dependent hysteresis properties of Ising-type multilayer nanowire (IMN) on hexagonal structure by the effective-field theory with correlations. The phase diagrams are presented in the different planes as function of coercivity (H) and remanence (M) to investigate the soft/hard magnetic behaviors of the system. The system exhibits different hysteresis properties and soft/hard magnetic behaviors as a result of angular, thermal, and geometrical variations. In the cases of the increasing temperature, angle (φ), as well as the wire length (r) and shell length (s), a decrease in the magnetic hardness are observed. Moreover, if the p increases, the system illustrates more soft magnetic properties. Comparisons between the observed theoretical results and some experimental works of nanowire with hysteresis behaviors are made and a very good agreement is obtained.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know