Fast Algorithm for Evaluating Critical Current of High-Temperature Superconducting Pancake Coil
Journal of Superconductivity and Novel Magnetism, ISSN: 1557-1947, Vol: 31, Issue: 2, Page: 307-312
2018
- 6Citations
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Second-generation (2G) high-temperature superconducting (HTS) tapes are now capable of carrying very high transport current and promising for a wide range of applications. The critical current of HTS coils is important for applications, such as superconducting electric machines, superconducting magnetic energy storage, and superconducting magnets. Therefore, precisely and quickly calculating critical current of HTS coils is very important for designing HTS devices. This paper provides a fast algorithm for evaluating critical current of HTS pancake coil. The fast algorithm is realized through a stationary model, which is based on finite element method (FEM) software. The stationary model means that the model is solved by stationary study instead of time-dependent study. To validate this method, a pancake HTS coil was wound and its critical current was measured. Meanwhile, an axial symmetric stationary model was built according to the geometry of the measured HTS coil. By comparing measured and calculated results, the effectiveness of the stationary model was demonstrated. Moreover, the stationary model is compared with H formulation model. The calculated results by the two models are nearly the same. However, by using stationary calculation, the stationary model can remarkably speed up the computational process. Due to the advantage of calculating speed, the stationary model can be used to characterize and design large-scale HTS applications.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85021837587&origin=inward; http://dx.doi.org/10.1007/s10948-017-4194-2; http://link.springer.com/10.1007/s10948-017-4194-2; http://link.springer.com/content/pdf/10.1007/s10948-017-4194-2.pdf; http://link.springer.com/article/10.1007/s10948-017-4194-2/fulltext.html; https://dx.doi.org/10.1007/s10948-017-4194-2; https://link.springer.com/article/10.1007/s10948-017-4194-2
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know