Experimental Study of the Bottleneck in Fully Developed Turbulence
Journal of Statistical Physics, ISSN: 1572-9613, Vol: 175, Issue: 3-4, Page: 617-639
2019
- 30Citations
- 23Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The energy spectrum of incompressible turbulence is known to reveal a pileup of energy at those high wavenumbers where viscous dissipation begins to act. It is called the bottleneck effect (Donzis and Sreenivasan in J Fluid Mech 657:171–188, 2010; Falkovich in Phys Fluids 6:1411–1414, 1994; Frisch et al. in Phys Rev Lett 101:144501, 2008; Kurien et al. in Phys Rev E 69:066313, 2004; Verma and Donzis in Phys A: Math Theor 40:4401–4412, 2007). Based on direct numerical simulations of the incompressible Navier-Stokes equations, results from Donzis and Sreenivasan (657:171–188, 2010) pointed to a power-law decrease of the strength of the bottleneck with increasing intensity of the turbulence, measured by the Taylor micro-scale Reynolds number R. Here we report the first experimental results on the dependence of the amplitude of the bottleneck as a function of R in a wind-tunnel flow. We used an active grid (Griffin et al. in Control of long-range correlations in turbulence, arXiv:1809.05126, 2019) in the variable density turbulence tunnel (VDTT) (Bodenschatz et al. in Rev Sci Instrum 85:093908, 2014) to reach R > 5000, which is unmatched in laboratory flows of decaying turbulence. The VDTT with the active grid permitted us to measure energy spectra from flows of different R, with the small-scale features appearing always at the same frequencies. We relate those spectra recorded to a common reference spectrum, largely eliminating systematic errors which plague hotwire measurements at high frequencies. The data are consistent with a power law for the decrease of the bottleneck strength for the finite range of R in the experiment.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85062707101&origin=inward; http://dx.doi.org/10.1007/s10955-019-02251-1; http://link.springer.com/10.1007/s10955-019-02251-1; http://link.springer.com/content/pdf/10.1007/s10955-019-02251-1.pdf; http://link.springer.com/article/10.1007/s10955-019-02251-1/fulltext.html; https://dx.doi.org/10.1007/s10955-019-02251-1; https://link.springer.com/article/10.1007/s10955-019-02251-1
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know