Investigating the effects of sequential aging temperature profiles on the response of neoprene rubber
Journal of Polymer Research, ISSN: 1572-8935, Vol: 31, Issue: 4
2024
- 1Citations
- 2Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
We conducted a comprehensive investigation to understand the effects of sequential aging temperature profiles on Neoprene rubber, aiming to provide a clearer understanding of the purpose, methodology, findings, and implications of our work. Two sequential thermal aging conditions were applied to the Neoprene rubber samples in a controlled, moisture-free environment. The characterization of the aged samples included crosslinking density analysis using swelling tests, Differential Scanning Calorimetry (DSC), and uni-axial tensile tests. Our study focused on unraveling the changes in the physical and mechanical properties of the Neoprene matrix resulting from thermal aging. Notably, we found that the degradation of Neoprene was influenced by both the temperature and the order of the aging profiles. Higher temperatures led to increased cross-linking density and improved thermal stability, indicating a prevalence of oxidation cross-linking over chain scission. This led to the creation of a more compact network structure within the material. Moreover, we introduced the concept of damage capacity, which revealed that different mechanisms of damage affect the material’s toughness with varying degrees of impact. This understanding emphasizes the limited capacity for damage and subsequent mechanisms’ reliance on the remaining capacity. The significance of our work lies in shedding light on the interplay between thermal aging conditions and the behavior of Neoprene rubber. The findings provide valuable insights for material design and have implications for a range of applications.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know