PlumX Metrics
Embed PlumX Metrics

Probability of cell transformation effect per mSv induced by α-particle radiation

Journal of Radioanalytical and Nuclear Chemistry, ISSN: 0236-5731, Vol: 298, Issue: 2, Page: 1341-1346
2013
  • 0
    Citations
  • 0
    Usage
  • 5
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Radiation carcinogenesis is one of the major biological effects considered to be important in risk assessment of radioactive exposures. The purpose of this work is to calculate the probability of cell transformation effect per mSv induced by α-particle radiation, from radon progeny, on sensitive cells of human lung. Probability was calculated by applying the analytical model cylindrical bifurcation (Jovanović et al., J Radioanal Nucl Chem 290(3):607-613, 2011) which was created to simulate the geometry of human airways with the geometric distribution of cell nuclei in the airway wall of the tracheobronchial tree. Cell transformation can change form or structure DNA, and this change cause that a normal cell undergoes as it becomes malignant. It is possible that radon is the number one cause of lung cancer among people who do not smoke. This analytical model of the human traheobronchial tree represent the extension of the ICRP66 (ICRP Human Respiratory Tract Model for Radiological Protection, 1994) model. Propagation of α-particle was simulated by Monte Carlo method. Reported probabilities are calculated for various targets and alpha particle energies. The sources included fast and slow mucus in BB and bb region. The targets are basal and secretory cells in BB region, and secretory cells in bb region. Results obtained in this work are unique. © 2013 Akadémiai Kiadó, Budapest, Hungary.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know