Probability of cell transformation effect per mSv induced by α-particle radiation
Journal of Radioanalytical and Nuclear Chemistry, ISSN: 0236-5731, Vol: 298, Issue: 2, Page: 1341-1346
2013
- 5Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures5
- Readers5
Article Description
Radiation carcinogenesis is one of the major biological effects considered to be important in risk assessment of radioactive exposures. The purpose of this work is to calculate the probability of cell transformation effect per mSv induced by α-particle radiation, from radon progeny, on sensitive cells of human lung. Probability was calculated by applying the analytical model cylindrical bifurcation (Jovanović et al., J Radioanal Nucl Chem 290(3):607-613, 2011) which was created to simulate the geometry of human airways with the geometric distribution of cell nuclei in the airway wall of the tracheobronchial tree. Cell transformation can change form or structure DNA, and this change cause that a normal cell undergoes as it becomes malignant. It is possible that radon is the number one cause of lung cancer among people who do not smoke. This analytical model of the human traheobronchial tree represent the extension of the ICRP66 (ICRP Human Respiratory Tract Model for Radiological Protection, 1994) model. Propagation of α-particle was simulated by Monte Carlo method. Reported probabilities are calculated for various targets and alpha particle energies. The sources included fast and slow mucus in BB and bb region. The targets are basal and secretory cells in BB region, and secretory cells in bb region. Results obtained in this work are unique. © 2013 Akadémiai Kiadó, Budapest, Hungary.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84885947731&origin=inward; http://dx.doi.org/10.1007/s10967-013-2620-x; http://link.springer.com/10.1007/s10967-013-2620-x; http://link.springer.com/content/pdf/10.1007/s10967-013-2620-x; http://link.springer.com/content/pdf/10.1007/s10967-013-2620-x.pdf; http://link.springer.com/article/10.1007/s10967-013-2620-x/fulltext.html; https://dx.doi.org/10.1007/s10967-013-2620-x; https://link.springer.com/article/10.1007/s10967-013-2620-x
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know