Energy storage performance of NaKNbO-P(VDF-TrFE) lead-free composite films
Journal of Sol-Gel Science and Technology, ISSN: 1573-4846, Vol: 93, Issue: 3, Page: 608-614
2020
- 2Citations
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations2
- Citation Indexes2
- CrossRef2
Article Description
The lead-free NaKNbO-Poly(vinylidene fluoride-trifluoroethylene) (KNN-P(VDF-TrFE)) composite films were prepared by sol-spin coating method. The KNN film was annealed at 700 °C for 3 min with the P(VDF-TrFE) film annealed then at 160 °C for 2 h. The ferroelectric and energy storage properties of composite films were also investigated. The energy storage density of the composite films reached 7.58 J/cm, and the efficiency was 52%. In addition, the KNN-P(VDF-TrFE) composite films showed weak leakage behavior. [Figure not available: see fulltext.].
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know