Gelation performance of PAM/PEI polymer gel with addition of retarder in high-salinity conditions
Journal of Sol-Gel Science and Technology, ISSN: 1573-4846, Vol: 101, Issue: 1, Page: 299-313
2022
- 8Citations
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The complex nature of heterogeneous reservoirs requires the development of effective and stable polymer gel to reduce excessive water production. Organically cross-linked polymer gel is becoming popular and an effective means of conformance control. The key objective of gel treatment is to reduce the flow of water through high-permeability channels and divert the subsequent injection water to the productive zones of the reservoir. This article briefly studied the effects of salinity and NHCl as retarders on the performance of the PAM/PEI polymer gel, especially the effects on viscosity, gelation time, gel strength, and gel morphology. The experimental results show that the effectiveness of NHCl to extend the gelation time of polymer gel is significantly reduced in high salinity. With the increase of salinity, the gel network greatly loses its gel strength as well. This indicates that a weak gel structure is formed and becomes vulnerable as observed from the surface morphology. It can be observed that PAM/PEI gel with NHCl in high salinity has a certain granular structure in some regions. These findings provide a better understanding and give additional insight as current studies have not significantly described the performance of PAM/PEI polymer gel with NHCl as a retarder that was prepared in high salinity for high-temperature water control application. [Figure not available: see fulltext.]
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know